


ARCTIC AND ANTARCTIC BIODIVERSITY: IMPLICATIONS FOR PHARMACOLOGY AND ANTIMICROBIAL RESISTANCE

ABSTRACT: 
Research into Arctic and Antarctic pharmacology deals with the peculiar pharmaceutical potential of polar organisms. Highly extreme environments, such as those of the polar regions, harbor many species, including marine organisms and fungi, that synthesize novel bioactive compounds of significant therapeutic interest, especially against antimicrobial resistance a global health crisis. Marine terpenoids and fungal products from polar regions were promising for antimicrobial, antiviral, or antitumor purposes. Polar organisms have so far evolved to tolerate extreme cold, low light intensities, and high ecological pressure; the result is that secondary metabolites developed are extraordinarily equipped with bioactivity. Through these compounds, such organisms thus turn out to be efficient in treating infections and show potential for anticancer and anticancer therapy. Vitamin D deficiency occurs by large in most Arctic inhabitants since they receive minimal sunshine and exposure. This gave rise to the study on supplementation regimes and the formulation of drugs tailored for polar environments. All these discoveries hold high value in the management of health care of indigenous Arctic populations and Antarctic researchers and military men stationed in these areas. Drug development in Arctic medicine necessitates rigorous research, moral bio-prospecting, sustainable procedures, and cooperation between researchers, healthcare practitioners, politicians, and local communities. Polar pharmacology, a field that rapidly emerged, is providing ready-to-translate insights into the treatment of infections caused by drug-resistant pathogens and other health issues related to extreme environments. It can further unlock more resources for answering unmet medical needs in pursuit of broad public health outcomes.
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Research in pharmacology encounters unique challenges and opportunities due to the harsh environments and diverse ecosystems of the Arctic and Antarctic. Polar organisms have become crucial in studying rapidly changing climate conditions in these regions. Genomics, in particular, offers unprecedented insights into the unique adaptations and fundamental biological principles of these organisms. Assessing polar biodiversity through multi-omics approaches is essential for understanding the evolution of life in permanently cold environments.[1] Some polar organisms exhibit extraordinary adaptations that allow them to survive in extreme conditions, which has led to the biosynthesis of novel bioactive molecules.[2] Polar microorganisms, especially, have shown promising potential as sources of new natural medicines and biological agricultural chemicals. Cold-adapted bacteria and fungi from polar regions possess broad antibacterial characteristics, producing chemicals that are effective against a wide range of diseases.[3] These organisms, particularly from Antarctica, have immense potential in combating antimicrobial resistance. Although relatively few patents currently exist, the diversity of species and compounds from polar biota suggests significant potential for future antimicrobial discoveries.[4] The polar regions are among the harshest and most isolated places on Earth, where the unique climate and intense ecological competition foster the production of compounds with diverse biological activities.[5] The field of Arctic pharmacology specifically examines the effects and applications of medications in cold climates. 
Health concerns common among Arctic populations include infectious diseases, malnutrition, and mental health disorders. This field explores the development of drugs tailored to these specific conditions, as extreme cold, limited healthcare access, and indigenous communities present unique challenges.[6] In providing appropriate treatments for isolated Arctic populations, pharmacological research also investigates how environmental conditions affect medication efficacy and safety. Research in this area addresses health issues relevant to Antarctic residents, researchers, and visitors, recognizing that the Antarctic climate-while distinct from the Arctic in its isolation, extreme temperatures, and unique ecosystems-presents similar challenges.[7]
2. POLAR LATITUDE MARINE TERPENOIDS 
Extremes in temperature, light photoperiod, and ice disturbance, combined with biological interactions, have led to the selection of species with a unique suite of secondary metabolites, allowing the polar marine biota to thrive in one of the most inhospitable habitats known in the ocean.[8] Arctic organisms and Antarctic oceans are rich sources of natural resources, with exceptional bioactivities for human use and a wide range of structural diversity.[9] The most commonly identified chemicals are chemical skeletons from the terpene family, and the most thoroughly described activity from these environments is the ability to fight infections via cytotoxic antimicrobial properties.[10] Terpene and terpenoid derivatives appear to be the most regularly reported compounds with pharmacological potential isolated from Arctic and Antarctic marine species, based on published data.[11] Furthermore, these chemical classes frequently exhibit exceptional antimicrobial capabilities, including antiviral and anticancer activity.[12] Such cytotoxic responses are most likely in response to harmful effects caused by terpenoids. Thus, marine creatures from the polar regions could make a significant contribution to the growing repertoire of promising bioactive chemicals.[13]
3. DIVERSITY OF CULTIVABLE FUNGAL 
In Antarctica, fungi can be found in a wide range of environments. Despite harsh environmental conditions, the fungal communities that inhabit lakes are renowned for their richness.[14] [15] From Antarctic Lake sediments, researchers recovered 195 fungal isolates. These isolates were identified as belonging to 42 taxa in the Ascomycota, Basidiomycota, and Mortierellomycota, with the most common being the lebolusglobosus, Antarctomyces psychrotrophic, Pseudogymnoascus verrucosus, Vishniacozymavictoriae, and Phenoliferia sp. [16]
3.1 BIO PROSPECTION
Antarctica has a total area of 13. Distributing over 8 km 2 with various terrestrial and marine ecological systems. But Antarctica has different environments, so different cold cosmopolitan, and endemic microorganisms are found here. Bioprospecting research using Antarctic microorganisms has intensified in the last few years. Among most of them, fungi have proved their perspectives on bio products’ relevance in medicine, industry, and agriculture.[17] The mean baseline 25(OH)D level was 64.9 ± 19.1 nmol/L. A full stay had an overall effect of -15.0 nmol/L (95% CI: -25.9, -4.2; P = 0.007) on mean 25(OH)D. The funnel plot shows that there was no publication bias in the study. However, much research has been done on the biodiversity of fungi worldwide, and an estimate of their species has been made. A surprising diversity of fungal species has been discovered via the development of molecular phylogeny, and the use of culture-independent techniques such as high throughput amplicon sequencing has significantly expanded the number of fungal operational taxonomic units. By using molecular phylogeny, many cryptic species were also identified. Data collected and generated from independent and culture-dependent studies have shown that there are now 13.2 million fungal species on Earth, up from a previous estimate of 2.2 to 3.8 million.[19] Fungal variety is a fundamental component of nature that not only monitors the environment but also plays a role in agriculture, medicine, pharmacology, industry, food, technology, and other biotechnological fields. Fungi are well known for their capacity to colonize a wide range of settings and reproduce naturally. One-third of the world's fungal variety is found in India. However, fungal taxonomists are becoming increasingly scarce, posing a threat to the discovery of hidden fungal wealth. Some fungi have also become extinct, necessitating mycologists' monitoring to ensure their survival.[20]
4. ANTIMICROBIAL SUBSTANCES DERIVED FROM ANTARCTIC ORGANISMS

Any natural, synthetic, or semi-synthetic substance that can combat germs is referred to as an antimicrobial.[21] [22] The golden age of antibiotic therapy began with the discovery of penicillin and was characterized by the discovery of several natural compounds with unique mechanisms of antimicrobial activity. These compounds' introduction into clinical practice has significantly increased human life expectancy and quality.[23] [24] There are currently resistance mechanisms in place against every class of antimicrobial medication.[25] The World Health Organization (WHO) has estimated that antibiotic-resistant diseases are a global public health concern that currently results in approximately 700,000 annual fatalities and may escalate to 10 million deaths annually by the year 2050. Examining patent patterns in antimicrobial chemicals derived from Antarctic species, the study focuses on researchers, global geography, and medical applications. When it comes to studying and patenting antimicrobials from Antarctica, the US, South Korea, and China are the most involved.[26]

5. ANTARCTIC MARINE NATURAL PRODUCTS 
Natural compounds have significant ecological and medicinal potential and are consequently widely found in Antarctic organisms. However, there is still more research to be done on the possible uses of marine natural compounds in pharmacy.[27] Chemical defenses are a tactic used by many Antarctic marine species to fend off predators. The natural substances that exhibit the pharmacological effects that have been noted, such as antibacterial, anti-inflammatory, and anticancer properties, have not yet been found. At depths between 200 and 500 meters, ecologically active species are more frequently observed, and sessile creatures are almost four times more likely than mobile organisms to have chemical defenses against predators.[28] Some naturally occurring marine compounds are utilized, among other things, as analgesics to relieve inflammation or as anticancer medications.[29] With a wide range of bioactivities, Antarctic marine benthic crustaceans represent a valuable but understudied source of natural products. Only above 3% of the marine natural products have so far been found to originate from the polar areas, where, despite great diversity and chemo diversity of Antarctic marine life, it is found that a significant amount of potential remains unrealized. This biodiversity and chemo diversity, therefore, forms the basis for exploiting entirely the advantages of Antarctic marine natural goods when managed sustainably. Hence, there is a demand for supply issues to be addressed, and speed up the discovery process, and come down the cost of research. [30] Only a tiny portion of the numerous bioactive substances identified from the seas have been investigated for their ecological importance. Similarly, because the chemicals involved are yet unknown, the majority of chemical-mediated interactions are poorly understood. Although polar species are equally prolific manufacturers of chemical barriers, and pharmacologically relevant compounds are being documented from the Southern Ocean, this information gap is much more pronounced in Antarctica than in tropical or temperate regions. It is anticipated that newly discovered functional secondary metabolites will be selected by the harsh and distinctive maritime conditions around Antarctica as well as the many odd interactions occurring in benthic organisms. [31] Indeed, some research indicates that marine creatures yield a greater quantity of bioactive natural compounds compared to terrestrial animals.[32]

5.1 ECOLOGICAL ACTIVITY
Using the common, eurybathic, and generalist sea star O. validus, the possible ecological action of extracts from marine benthic species against a macropredator was determined.[33] This sea star is a useful model for conducting repellence bioassays using our previously outlined methodology because it is a common sympatric predator.[34] Protection from O. validus predation is assessed along depth gradients of sample collection, taking into account the organisms' vagile or sessile lifestyles.[35] Human activity-related chemical and sewage pollution in Antarctica is a persistent problem, and existing sewage treatment techniques are insufficient to stop local contamination. The Antarctic flora and fauna have been disrupted by human activities such as building and transportation, and a few non-native species have established themselves, mostly in the southern Scotia Arc and northern Antarctic Peninsula. Fishing operations may have significant effects on accidental capture species and the larger environment, and overfished fish populations in Antarctica have not shown much indication of recovery.[36]
5.2 PHARMACOLOGICAL ACTIVITY

Consideration is given to the pharmacological activity of the antibacterial, anti-inflammatory, and anticancer qualities assessed in recent projects. These investigations tested several materials against human tumor cell lines (HT-29, A-549, and MDA-MB 231) and anti-inflammatory properties. Measurements of the anti-inflammatory activity included a decrease in the synthesis of several inflammatory mediators, such as prostaglandin E2, leukotriene B4, and interleukin-1β. [37] More than 125,000 natural product extracts are available in the fractionation library of the National Cancer Institute's natural product discovery program for screening against disease states to reinvigorate natural product-based discovery.38] Diverse cultivable fungi from Antarctic lake benthic mats produce novel antimicrobial and cytotoxic compounds.[39] Antarctic macroalgae host diverse and complex fungal communities that may be a source of bioactive compounds. The most common taxa were Geomyces species (sp.), Penicillium spp., and Metschnikowia australis.[40] Marine fungi colonize a diverse spectrum of organic substrates, including sponges, corals, echinoderms, vertebrates, and algae. The research of fungal species diversity in marine algae is in its early stages, yet these microorganisms are particularly interesting due to their ecological significance.[41]
6. ANTIOXIDANT PROPERTIES OF ANTARCTICA'S SANIONIA UNCINATE 
Antioxidant medicines can cure oxidative illnesses by scavenging oxygen, chelating catalytic metals, and neutralizing reactive oxygen species (ROS).[42] Butylated Hydroxyanisole (BHA), Butylated Hydroxytoluene (BHT), Propyl Galate, and Tetra butyl hydroquinone are the most often utilized antioxidants. Furthermore, several publications have been released on the synthesis of substances with potent antioxidant qualities. The creation of potent antioxidants using a natural source is very desirable due to the significant carcinogenicity of synthetic antioxidants.[43] Sanionia uncinata, an Antarctic moss, has shown promise for photoprotection and strong antioxidant qualities. Research has demonstrated that S.uncinata extracts can scavenge free radicals; the superoxide, IC50 values for DPPH, and ABTS cation scavenging range from 181.3 to 466.2 µg/Ml.[44] The moss contains various flavonoids and phenolic compounds that enhance its antioxidant activity. Extracts have been proven to possess defense mechanisms against DNA breakage caused by reactive oxygen species, especially by superoxide and hydroxyl radicals. In addition, the extracts of S. uncinata exhibited photoprotective activities against UV radiation, such as UV-C and UV-A, with no reported phototoxicity or mutagenicity. Compared with hydroethanolic extract, aqueous extract has been reported to offer better protection against thymine dimerization caused by UV radiation. These results may make it possible to suggest that S. uncinata may be a good organic source of antioxidants and photoprotectors useful in medicine and cosmetics.[45]
7. ANTARCTIC AND SUB-ANTARCTIC: ANTITUMOURAL ACTIVITY
A prospecting search for antitumoral activity in polar benthic crustaceans was conducted in three locations: sub-Antarctic Bouvet Island, the Antarctic's eastern Weddell Sea, and the Antarctic's South Shetland Islands. Marine environments are regarded to be the most important potential sources of biodiversity on Earth. The largest pharmacological study of marine benthic invertebrates from the Antarctic and sub-Antarctic ever carried out. Sessile marine invertebrates from all over the world have been studied, and it has been found that these animals are more prone to creating harmful compounds.[46] Antarctica contains the South Shetland Islands, the Eastern Weddell Sea, and Bouvet Island. Three human tumor cell lines were used to evaluate the pharmacological potential of 770 benthic invertebrate samples (covering at least 290 diverse species) from 12 different phyla. Bioassays revealed anticancer activity in 15 unique species from five different phyla: Tunisia (5), Porifera (4), Cnidaria (3), Echinodermata (2), and Annelida (1).[47]

8. IN NORWEGIAN, ACUTE MYOCARDIAL INFARCTION IS TREATED

Acute Myocardial Infarction (AMI)-)-related disability and mortality rates may be reduced with the right therapies.[48] The prevalence of cardiovascular disease (CVD) and associated lifestyle factors varies globally.[49] Studies on how these patterns relate to one another over time suggest that changes in lifestyle factors occur before changes in CVD outcomes. Effective cardiovascular treatment may potentially be responsible for a decline in the death rate from CVD.[50] It has long been known that AMI is more common in northern Norway, especially in Finn Mark County.[51] Investigating how Acute Myocardial Infarction (AMI) is managed in Northern Norway, comparing it to national data, and documenting whether or not a comparable standard of care exists were the goals. The retrospective analysis included information on patients' AMI therapy. The following sources were consulted. The Norwegian Patient Registry, the National Quality of Care Database, the Norwegian Myocardial Infarction Registry, and the National Air Ambulance Services of Norway. AMI incidence, age- and gender-adjusted AMI rates, revascularization (PCI, CABG) according to the patient's residency, and 30-day survival rate were the variables that were examined throughout the 2012–2014–2015 study period. The yearly occurrence of AMI was 9% greater in the northern climate.[52]

9. COULD YOU TAKE ANESTHESIA PRESCRIPTIONS IN ANTARCTICA? 

Physicians in general may be required to work in unfamiliar or difficult locations in which medical resources get depleted or medicine efficacy is altered due to environmental conditions.[53] These conditions can introduce uncertainty into anesthetic techniques, affecting patient safety.[54] Antarctica is the continent with the lowest temperatures, the most wind, and the highest elevation. It is one of the most remote areas on the planet, with some of the harshest natural conditions.[55] In these difficult weather conditions, the medical capacities of numerous military stations and warships are limited.[56] Anesthesiologists may be required to operate in unfamiliar or complicated settings where the availability of medical supplies is reduced or medication efficacy is changed owing to external circumstances. These circumstances may increase the level of ambiguity in the anesthetic plan, which may affect patient safety.[57]
10. ANTARCTICA'S VITAMIN D LEVEL AND SUPPLEMENTATION
Vitamin D insufficiency affects a large portion of the global population. Vitamin D insufficiency can cause bone mineralization defects, resulting in 1000000 osteomalacia in adults and rickets in children.[58] [59] Vitamin D deficiency is caused by insufficient sun exposure, particularly at higher latitudes, which reduces skin production during the winter. Sunlight may be insufficient for year-round VD synthesis in high circumpolar latitudes.[60] [61] Solar UV radiation in Antarctica is shallow at high latitudes and low elevation angles, notwithstanding the stratosphere ozone layer hole.[62] [63] Residents spend the majority of their time indoors due to the frigid weather and severe polar climate. Both year-round or overwintering inhabitants and shorter visits make up the two categories of seasonal stays in Antarctica, which vary greatly. During visits to the Antarctic, food choices and dietary practices have an impact on vitamin D levels. Deficit in vitamin D is generally increased by harsh weather and little sun exposure. Humans in Antarctica benefit from vitamin D supplements, which can improve their Vitamin D status and may even be required for expeditions with restricted access to UVB radiation.[64]

10.1 VITAMIN D STATUS FOR THE ENTIRE ANTARCTIC STAY
The status of vitamin D has been significantly decreased after occupying Antarctica, especially during winter; supplementation improves this status.[65] Humans in Antarctica face a variety of environmental obstacles, including minimal UV radiation, which is necessary for vitamin D generation in humans. Elevated vitamin D levels in the blood may safeguard against future deficiencies. Living in the Neumayer Stations may result in lower serum vitamin D levels than in other equivalent high latitudes.[66] These people, particularly space travelers, are at risk since they have had little exposure to UVB light. New evidence suggests that blood 25-hydroxyvitamin D levels should be more than or equal to 80 nmol/L.[67] A meta-analysis of 10 studies on the impact of Antarctic residents on vitamin D status found that a whole stay in Antarctica significantly lowered the body's vitamin D status. The mean baseline 25(OH)D level was 64.9 ± 19.1 nmol/L. A full stay had an overall effect of -15.0 nmol/L (95% CI: -25.9, -4.2; P = 0.007) on mean 25(OH)D. The funnel plot shows that there was no publication bias in the study. The findings imply that living in the Antarctic considerably lowers vitamin D levels.[68]

11. ANTARCTICA - ANTIMICROBIAL RESISTANCE

A worldwide worry is the quick spread of antibiotic resistance to microorganisms in Antarctic fauna. Antibiotic resistance was found in 80% of the isolates of bacteria from Antarctic animals. Common gut microorganisms such as Enterobacteriaceae and Enterococcus were among the resistant bacteria. Due to their wide variety of antibiotic resistance, penguins and pinnipeds may be used as sentinels for future research.[69] One significant issue facing world health is Antimicrobial Resistance (AMR).[70] Antarctica is one place on Earth where surveillance is very lacking. Although this far-off, harsh environment is not known to be a hotspot for antimicrobial resistance, comparatively pure areas with minimal levels of human habitation can serve as easier model systems for researching the elements that spread antimicrobial resistance. Examining AMR in these domains can help determine how much human activities have contributed to the spread of antibiotic-resistant bacteria and antimicrobial-resistance genes.[71] In Antarctica, AMR is more common around research sites, while it seems to be low in the indigenous fauna. Anthropogenically introduced AMR is still absent from Antarctica's least populated areas. Inconsistent reporting standards, methods, and inadequate geographic coverage of the data make it impossible to thoroughly evaluate AMR levels in Antarctica.[72]
11.1 ENDEMIC AMR
Antibiotic Resistance (AMR) is inevitable, even in pristine places such as Antarctica.[73] In Antarctic bacteria found in pristine environments such as freshwater lakes, soils, phytoliths, and glacial ice cores, antibiotic-resistant genes have been detected in low quantities.[74] Remoteness in harsh environments like Antarctica is believed to have a far less detrimental impact on humans than in many other parts of the world, even though the rate at which antimicrobial resistance is spreading alarms, particularly about clinical environments, is rising in many parts of the world. Antarctica is frequently regarded as the planet's final unspoiled continent. The mechanisms and interactions underlying the early stages of the evolution process, de novo development, acquisition, and transmission of AMR can likely be better understood in such remote regions, which are thought to have very low levels of AMR due to limited human activity. With great populations of migrating birds and other animals in addition to well-defined areas of human settlement and scientific research sites, Antarctica holds great promise for the tracking and understanding of early-stage zoonotic interactions. However, there are very few studies on AMR in Antarctica today.[75] Since antibiotics are naturally created in hostile environments as defensive mechanisms, broad-spectrum resistance is a result of these extreme environmental conditions.[76] From the widespread use of antibiotics, antibiotic resistance in aquatic bacteria has increased steadily, whereas antibiotic contamination in Antarctica should have been limited by practice and international treaties.[77]
11.2 ANIMAL VECTORS OF AMR IN ANTARCTICA
One important area of unanswered research is how charismatic megafauna in Antarctica affect antimicrobial resistance (AMR). There is little information on wildlife as AMR vectors, but it is known that people and animals may cooperate to transfer antibiotic-resistant genes.[78] The gut flora of arctic fauna, especially birds, was first studied in 1899.[79] Bacteria from pigeon intestines and other animals were easily isolated as molecular biology and culture techniques advanced.[80] Warm-blooded marine animals in Antarctica harbor clinically relevant antimicrobial resistance determinants, indicating ocean pollution with antibiotic-resistant bacteria. [81]

12. DRUG DEVELOPMENT METHODOLOGY IN ARCTIC MEDICINE

Issues relating to biology and medicine are closely associated with the development and exploration of the Arctic areas.[82] Medical devices, drugs, and prophylactics must be designed and developed for use in the Arctic.[83] Even with all of the knowledge and experience that has been gathered, there is still no tried-and-true set of procedures for determining the effects of cold on an animal's body. This is also the case for in vivo studies of hypoxic conditions; the photoperiod plays an important role in these situations, but it is frequently disregarded.[84] When designing medications for use in the Arctic, it is especially crucial to consider how best to optimize the injectable drug's characteristics through the use of cryoprotectants. The question of adaptive development is another important one to emphasize.[85] Inextricable is the relation between the exploration and the development of Arctic territories with the developing associated problems of a medical-biological nature. It is necessary to design and develop the drugs for emergency care and prevention medical devices that would be used in the Arctic.[86]

13. CONCLUSION
Research and ethical bio-prospecting are crucial for utilizing the potential of extreme environments like Antarctica. Sustainable practices and advanced technologies can develop new treatments for infectious diseases and antibiotic resistance. Collaborative efforts among researchers, healthcare providers, policymakers, and local communities are essential for navigating complex drug development in Arctic medicine.
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